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A N I S O T R O P I C  S T R E N G T H E N I N G  

O F  A N  O R T H O T R O P I C  M A T E R I A L  

V. M. Zhigalkin and B. A. Rychkov t UDC 539.374 

The experimental results obtained in [1] in testing thin-walled tubular samples of zirconium alloy 
under biaxial tension are analyzed. The features of development of elastoplastic deformations and deformation 
strengthening of the alloy in proportional loading are established. They made it possible to classify the alloy 
as an orthogonal-anisotropic material and to model the change of different strained states by means of a 
certain sequence of local slidings along the areas of basic tangential stresses. 

1. The results of proportional loading of seven samples at different ratios between the basic stresses - -  
the axial tension (along the cylinder generatrix) c% and the circumferential tension cry, (k~ = ~z/Cr~,) - -  are 
presented in [1]. Figures 1 and 2 illustrate the results of these experiments in the form of strain diagrams 
a_, = ~ (ez )  and cry, = c~,(e~,), respectively. The ratio k,  and the number of the sample tested are given for 
each of the diagrams. 

The data of the tests indicate the presence of initial anisotropy of the elastic deformation and strength 
properties. To detect elastic anisotropy,.the test results at equal biaxial tension cr~ = a~, (k~ = 1) and 
biaxial tension ~z = 0.5cry, (k~ = 0.5) equivalent to a pure shear stress with superimposed hydrostatic 
pressure are used. The initial linear sections of the strain diagram are well manifested at these tensions. The 
following tensions and deformations were taken as initial data from the reference points in such sections: 
~z = 11.14 �9 9.81 MPa, ~r~ = 11.18 �9 9.81 MPa, Sz = 0.042%, e~, = 0.074% at k~r = 0.5; Crz = 11.59 �9 9.81 MPa 
a~, = 27.90 �9 9.81 MPa, e, = 0.030%, e~, = 0.199% at ke = 1. The elastic constants of the generalized Hooke's 
law [2] were determined: 

1 U~z _ 1 Vz~ 
ez = E---~crz - --~--a~,,~ e~, = --cr~,E~, - ~ a~, (1.1) 

(E-, E~,, Uz~,, U~,z are the elastic constants of the material characterizing its orthotropy and having the sense 
of Young's modules and Poisson's coefficients). 

The elastic constants of the material (at the given initial data) found from relations (1.1) satisfy, with 
an accuracy of 5%, the equality 

EzU~z = E~uz~.  (1.2) 

It follows from (1.2) that these constants are the basic ones, and that the samples being tested have three 
orthogonal planes of elastic symmetry of the material directed along the z axis of the sample, tangentially to 
the cylinder generatrix ~, and in the direction of the radius r. The directions z, c2, r are als0 the basic ones. 

On the basis of this, for further calculations we finally take 

Ez = 21000 �9 9.81 MPa, v~z = 0.118, E~, = 13000 �9 9.81 MPa, u ~  = 0.190. (1.3) 

The values of the plastic strain components (Fz and F~) in axial tension were computed from (1.3). 
They were determined as the difference between the values of strains Sz and ~,  and their elastic constituents 
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by Hooke's law (1.t). The data are listed in Table 1. It is seen from Table 1 that the plastic strains at the 
first five points are such that 

Fz ~ - F ~ .  (1.4) 

Consequently, the plastic strain in the radial direction is FT = 0. This means that the action of the tension 
Crz > 0 causes the appearance and development of pure shear plastic strain (1.4), due, obviously, to only local 
slidings grouped initially near the direction of action the maximal tangential stress rz~. 

Further increase in the tension O'z leads to Fz > IF~I, the increment of the difference Fz - IF~I from 
one reference point to another remaining approximately constant up to the 9th point. Then it increases by 
approximately a factor of 1.8 and remains almost unchanged to the final tension. Such a variation in the 
relation between the components of plastic strain Fz and F~ can be explained by the fact that the sliding 
areas [3] Tij (i, j = z, ~, r), i.e., the areas where the basic tangential stresses act, are "brought into action" 
in succession. 

2. It is customary [4] to determine the yield stresses of anisotropic materials in different stress states 
by using some tolerance for the largest basic plastic strain because such materials do not have % unified" 
strengthening diagram in any kind of generalized coordinates. The value Fz = 0.1% is taken as this tolerance 
for the zirconium alloy under consideration for ~ /> k~ ~> 1, when the development process of plastic 
deformation can be considered steady-state, as follows from the strain diagrams (Fig. 1). Moreover, relation 
(1.4) is valid for this material at these stresses in a small vicinity of such conditional yield stress, i.e., slidings 
first occur in the area Tz~. It also follows from the plots in Fig. 1 that the yield stress ~ in the pure shear 
state (k~ = 2) is larger by approximately a factor of 1.2 than in axial tension (kc, = c~), for which 

~z y ~ 10.9.81 MPa (k, = ~ )  (2.1) 

is obtained. This is the first of the yield stresses in one of the three basic directions. In the two other basic 
directions, such stresses were determined in the following way. 

The stress state at which only the tension a~ is different from zero could not be realized because the 
test facility used is not suitable for compression of samples. Therefore, first the test data of sample No. 6605 
loaded in a state close to t h e p u r e  shear conditions (k~, ~ 0.5) were analyzed. This sample demonstrated 
a noticeable increment of the plastic strain component F~ at tension o'~ ,,m 38 �9 9.81 MPa. We assume that 
the relation between the yield stresses for ka = 0.5 and 0 (at a tolerance F~ = 0.1%) is the same as the 
above-mentioned relation between the yield stresses o'zY for ka = 2 and ~ .  As a result, 

a~Y ~ 32.9.81 MPa (ka = 0). . (2.2) 
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TABLE 1 

N az.9.81 o-~.9.81 

MPa 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

8.47 0 
16.42 0 
22.25 0 
23.31 0 
24.34 0 
27.55 0 
30.20 0 
32.90 0 
35.76 0 
37.98 0 
38.67 0 

~Z 

0.107 
0.250 
0.413 
0.487 
0.533 
1.300 
1.920 
2.730 
4.013 
4.950 
6.380 

01330 
0.382 
0.430 
0.980 
1.413 
2.040 
3.000 
3.660 
4.770 

F: 

0.066 
0.172 
0.307 
0.376 
0.417 
1.169 
1.776 
2.573 
3.843 
4.769 
6.196 

% 

0.001 
0.147 
0.310 
0.361 
0.408 
0.955 
1.386 
2.010 
2.968 
3.626 
4.735 

-Ir l) 

0.065 
0.025 -0.040 

-0.003 -0.028 
0.015 0.018 
0.009 -0.006 
0.214 0.205 
0.390 0.176 
0.563 0.173 
0.875 0.312 
1.143 0.268 
1.461 0.318 

Note .  N is a reference point number in tile experiment. 

It is known from experimental investigations that the Mises quadratic yield condition [6] 

H0(az - cry) 2 + F0((r v - o>) 2 + GO(aT - az) 2 = 1 (2.3) 

is valid [5] for an orthotropic material under loadings in its basic directions (H0, F0, Go are parameters 
characterizing the initial anisotropy of the material). 

It is impossible to determine experimentally tile yield stress (trY. Therefore, the yield law associated 
with condition (2.3) is commonly used. It follows from this law that [7] 

1 1 1 - 2v~z 
(d)2 , ( y)2 

Substituting the already known material parameters into this relation we obtain 

(r r Y = 10.77 �9 9.81 MPa (crz = o'~ = 0). (2.4) 

Using the yield stresses (in the basic directions) (2.1), (2.2), and (2.4) found in this way, we determine, 
on the basis of (2.3), the initial anisotropy parameters 

Ho = ~ + (~r~)2 (ay). , 

F0 = ~ + (ary)--- 5 (ay)---~- , Go = ~ + (a~) 2 (cr~)2 �9 

3. The quadratic yield condition (2.3) characterizes the initial isotropic (but different in each plane 
of symmetry) loading surface of an orthotropic material (i.e.,:reflects the so-called normal anisotropy [5]). 
However, deviations from condition (2.3) are observed in arbitrary loadings [5]. This is also valid for the 
material under consideration, as shown by the above comparison of the yield stresses a y for different types 
of stresses, which do not fit in dependence (2.3). In particular, its strength in biaxial tension is substantially 
higher than in uniaxial loading. 

Such a considerable and stable increase in biaxial strength was also observed for a sheet titanium 
alloy [8], whose yield stress in equal biaxial tension exceeded the yield stress in uniaxial tension by a factor 
of about 1.35. A special yield criterion for a plane with anisotropy is proposed in [5] in order to describe such 
strengthening associated with the material texture. A uniform yield function of an arbitrary fractional degree 
is introduced instead of the quadratic function. The yield stress in equal biaxial tension and the yield stress 
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TABLE 2 

N a:.9.81 a~.9.81 

MPa 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

28.076 0 
28.088 1.265 
28.080 4.794 
28.136 14.381 
28.010 25.233 
28.143 32.357 
28.057 38.349 
27.989 43.143 
27.954 45.540 

'27.937 46.733 
27.948 48.003 
27.989 43.143 
27.642 32.424 
27.965 13.982 
28.100 8.123 
28.014 2.330 
28.076 0 

~z 

0.973 
1.060 
1.080 
1.040 
0.987 
0.947 
0.900 
0.840 
0.793 
0.760 
0.713 
0.733 
0.793 
0.907 
0.987 
1.140 
1.220 

g~ 

-0.640 
-0.662 
-0.662 
-0.558 
-0.478 
-0,375 
-0.250 
-0.156 

0.096 
0.199 
0.346 
0.338 
0.235 

-0.037 
-0.147 
-0.332 
-0.404 

Fz 

0.8390 
0.9270 
0.9510 
0.9190 
0.8765 
0.8424 
0.8012 
0.7459 
0.7032 
0.6694 
0.6235 
0.6389 
0.6908 
0.7865 
0.8605 
1.0087 
1.0863 

F~ AFz AF~ 

% 

-0.6150 
-0.6463 
-0.6783 
-0.6731 
-0.6467 
-0.5984 
-0.5196 
-0.4625 
-0.2290 
-0.1352 

0.O020 
0.0314 
0.0106 

-0.1192 
-0.1840 
-0.3235 
-0.3786 

0.0880 
0.0730 

-0.0320 
-0.0425 
-0.0341 
-0.0412 
-O.0553 
-0.0427 
-0.0338 
-0.0459 

0.0154 
0.0519 
0.0957 
0.0740 
0.1482 
0.0776 

-0.0313 
-0.0320 

0.0052 
0.0264 
0.O483 
0.0788 
0.0571 
0.2335 
0.0938 
0.1372 
0.0294 

-0.0208 
-0.1298 
-0.0648 
-0.1395 
-0.0551 

N o t e .  N is a reference point number in the experiment. 

in pure shear parallel to the orthotropy axis are taken as initial data. Moreover, the state of the material is 
characterized by three more material parameters associated with the shape of the yield surface. 

A review of different yield criteria for initially anisotropic materials is given in [9]; a search for the 
criteria most suitable-in each particular case is in progress. It is shown [4] that an equation of at least sixth 
degree with respect to tensions is required to describe the yield surface of conventional (anisotropic) metals 
determined experimentally, or a similar equation can be represented in the form of anisotropic theory for the 
second and third invariants of the stress tensor. 

It is considered [4] that such an approach is not practical. In all these cases, the character of plastic 
deformation in its initial phase is not properly taken into account although it is of fundamental importance. 
As was shown above with the test data of alloy E-110 as an example, the occurrence of plastic deformation 
can be interpreted to be due to the beginning of slidings in the areas of the basic tangential stresses. Also, the 
modeling of the plastic deformation mechanism in terms of the concept of sliding is efficient in formulating 
the strengthening laws [3]. In complex loading of anisotropic materials the peculiar manifestation of the 
Baushinger effect, observed, for example, in testing sample No. 6611, should be taken into account. 

4. The complex loading of sample No. 6611 (Fig. 3) was performed in four steps: 1) axial tension up to 
the tension or* = 28.076 �9 9.8I MPa, 2) biaxial tension at crz = const such that, in additional loading by the 
tension a~,, its final value became larger than o'* by approximately a factor of 1.8; 3) unloading cr~ (crz = o'*), 
4) resumption of axial tension (crz > o'*, a~ = 0). 

At the end of the first loading step, F~=0.839% and r ~ =  - 0.615% (point A in Fig. 3, open circles). A 
comparison with the data of sample No. 6604 (ka=c~, closed circles) shows that the strengthening for sample 
No. 6611 in the section of uniaxial tension is larger than the strengthening of the previous sample. A coefficient 
of reduction to the nominal diagram kr is introduced [3] in such cases in the processing of experimental results, 
so that the tension of a particular sample multiplied by the coefficient/~ and the tension of a sample taken 
as the nominal one approximately coincide in the same plastic deformation. Such coincidence of this section 
the strengthening section of sample No. 6611 with the tension diagram of sample No. 6604 (which will be 
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considered nominal) is achieved if kr ~ 0.95. In other words, to compare the calculated and experimental data 
of sample No. 6611, the tensions appearing in it, including those at the sections of complex loading, must be 
reduced by a factor of 0.95. 

At the beginning of the second loading step, the strain component ~z (and its constituent Fz) continued 
to increase, and ~ (and F~) decreased (Table 2); at the tension a~ = 4.8.9.81 MPa (az = ~r*), Fz = 0.9506%, 
F~ = -0.6735%. This means that the slidings that  took place in axial tension continued, but, apparently, 
with weaker intensity. 

Further growth of the tension a~, beginning with cr~ ,~ 40 �9 9.81 MPa, leads to a prevailing positive 
increment of the component F~, which is caused by slidings in the area T~,r. 

At the end of the second loading step, Pz = 0.6235%, F~ = 0.002% (in Fig. 3, point A1, open circles, 
ez = ~r* as before), the relation between the components Fz and F~ changes in such a way that  it indicates the 
"engagement" of the section Tzr even before complete relief of the tension cry. After unloading, Pz = 1.0863%, 
F~ = -0.6735% (points A2 in Fig. 3). 

In the final step of loading, when the axial tension was continued, the diagram Crz(r taking into 
account the correction coefficient kr approximates an analogous diagram of the proportional axial tension 
(closed circles in Fig. 3). 

Sample No. 6631 was tested by the same loading program, as sample No. 6611. The strain variation 
pattern of this sample is similar to the pattern just considered (crosses in Fig. 3). 

Thus, the behavior of not only isotropic materials, but also initially anisotropic materials, under loading 
can be explained in terms of the concept of sliding, which reflects the basic mechanism of the plasticity 
phenomenon of polycrystaltine materials. Moreover, if we take into account that  local slidings are concentrated 
mainly in the areas of basic tangential stresses, it becomes clear why the majority of constructional materials 
are orthotropic: owing to these slidings, this symmetry is maintained at any intensity of slidings in different 
basic areas Tij of sliding. 
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